The goal of the plssem package is to allow the
estimation of complex Structural Equation Models (SEMs) using the
PLS-SEM framework. This package expands the PLS-SEM (and PLSc-SEM) framework
to handle categorical data, non-linear models, and multilevel structures.
plssem is currently under development. The end goal is to allow the estimation
of non-linear multilevel PLS-SEM (and PLSc-SEM) models with ordinal/categorical data.
The package currently needs to be installed from GitHub. Currently, it
also depends on the latest development version of modsem.
devtools::install_github("kss2k/modsem")
devtools::install_github("kss2k/plssem")library(plssem)
library(modsem)
tpb <- '
# Outer Model (Based on Hagger et al., 2007)
ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2
# Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
'
fit <- pls(tpb, TPB, bootstrap = TRUE)
summary(fit)tpb <- '
# Outer Model (Based on Hagger et al., 2007)
ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2
# Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
'
fit <- pls(tpb, TPB_Ordered, bootstrap = TRUE)
summary(fit)syntax <- "
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3
W =~ w1 + w2 + w3
Y ~ X + Z + (1 + X + Z | cluster)
W ~ X + Z + (1 + X + Z | cluster)
"
fit <- pls(syntax, data = randomSlopes, bootstrap = TRUE)
summary(fit)syntax <- "
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3
W =~ w1 + w2 + w3
Y ~ X + Z + (1 + X + Z | cluster)
W ~ X + Z + (1 + X + Z | cluster)
"
fit <- pls(syntax, data = randomSlopesOrdered, bootstrap = TRUE)
summary(fit)syntax <- '
f =~ y1 + y2 + y3
f ~ x1 + x2 + x3 + w1 + w2 + (1 | cluster)
'
fit <- pls(syntax, data = randomIntercepts, bootstrap = TRUE)
summary(fit)syntax <- '
f =~ y1 + y2 + y3
f ~ x1 + x2 + x3 + w1 + w2 + (1 | cluster)
'
fit <- pls(syntax, data = randomInterceptsOrdered, bootstrap = TRUE)
summary(fit)m <- '
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3
Y ~ X + Z + X:Z
'
fit <- pls(m, modsem::oneInt, bootstrap = TRUE)
summary(fit)m <- '
X =~ x1 + x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3
Y ~ X + Z + X:Z
'
fit <- pls(m, oneIntOrdered, bootstrap = TRUE)
summary(fit)- Fix mismatching thresholds in bootstrapping (
R/bootstrap.R, line 30)