Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion FlagEmbedding/abc/evaluation/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

from .data_loader import AbsEvalDataLoader
from .searcher import EvalRetriever, EvalReranker
from .utils import evaluate_metrics, evaluate_mrr
from .utils import evaluate_metrics, evaluate_mrr, evaluate_recall_cap

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -340,12 +340,18 @@ def compute_metrics(
results=search_results,
k_values=k_values,
)
recall_cap = evaluate_recall_cap(
qrels=qrels,
results=search_results,
k_values=k_values,
)
scores = {
**{f"ndcg_at_{k.split('@')[1]}": v for (k, v) in ndcg.items()},
**{f"map_at_{k.split('@')[1]}": v for (k, v) in _map.items()},
**{f"recall_at_{k.split('@')[1]}": v for (k, v) in recall.items()},
**{f"precision_at_{k.split('@')[1]}": v for (k, v) in precision.items()},
**{f"mrr_at_{k.split('@')[1]}": v for (k, v) in mrr.items()},
**{f"recall_cap_at_{k.split('@')[1]}": v for (k, v) in recall_cap.items()},
}
return scores

Expand Down
39 changes: 39 additions & 0 deletions FlagEmbedding/abc/evaluation/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,45 @@ def evaluate_mrr(
return mrr


# Modified from https://github.com/beir-cellar/beir/blob/f062f038c4bfd19a8ca942a9910b1e0d218759d4/beir/retrieval/custom_metrics.py#L33
def evaluate_recall_cap(
qrels: Dict[str, Dict[str, int]],
results: Dict[str, Dict[str, float]],
k_values: List[int]
) -> Tuple[Dict[str, float]]:
"""Compute capped recall.

Args:
qrels (Dict[str, Dict[str, int]]): Ground truth relevance.
results (Dict[str, Dict[str, float]]): Search results to evaluate.
k_values (List[int]): Cutoffs.

Returns:
Tuple[Dict[str, float]]: Capped recall results at provided k values.
"""
capped_recall = {}

for k in k_values:
capped_recall[f"R_cap@{k}"] = 0.0

k_max = max(k_values)
logging.info("\n")

for query_id, doc_scores in results.items():
top_hits = sorted(doc_scores.items(), key=lambda item: item[1], reverse=True)[0:k_max]
query_relevant_docs = [doc_id for doc_id in qrels[query_id] if qrels[query_id][doc_id] > 0]
for k in k_values:
retrieved_docs = [row[0] for row in top_hits[0:k] if qrels[query_id].get(row[0], 0) > 0]
denominator = min(len(query_relevant_docs), k)
capped_recall[f"R_cap@{k}"] += (len(retrieved_docs) / denominator)

for k in k_values:
capped_recall[f"R_cap@{k}"] = round(capped_recall[f"R_cap@{k}"]/len(qrels), 5)
logging.info("R_cap@{}: {:.4f}".format(k, capped_recall[f"R_cap@{k}"]))

return capped_recall


# Modified from https://github.com/embeddings-benchmark/mteb/blob/18f730696451a5aaa026494cecf288fd5cde9fd0/mteb/evaluation/evaluators/RetrievalEvaluator.py#L501
def evaluate_metrics(
qrels: Dict[str, Dict[str, int]],
Expand Down
Loading