Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
🧷 문제 링크
https://www.acmicpc.net/problem/2281
🧭 풀이 시간
27분
👀 체감 난이도
✏️ 문제 설명
폭이$M$ 이고, 줄은 무한한 노트가 있다.
길이가 각각$A_i$ 인 단어 $N$ 개를 노트에 차례대로 적었을 때 줄의 끝에 생기는 공백의 제곱의 합을 최소로 해야 한다.
단어를 쓸 때는 다음 줄에 새로 쓰거나, 이전 단어와 정확히 한 칸 공백을 사이에 두고 써야 한다.
🔍 풀이 방법
$dp[n][k] = $n번째 단어를 마지막 줄의$k$ 번째 칸까지 쓸 수 있으면 그 최솟값을, 쓸 수 없으면 -1
이렇게 정의하고 배낭을 돌렸다.
⏳ 회고
dp 식을 다섯 번은 갈아엎은 것 같다
골드 dp치고 어려움