[20250314] BOJ / P5 / 크리스마스 트리 꾸미기 / 권혁준#243
Merged
ShinHeeEul merged 1 commit intomainfrom Mar 14, 2025
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
🧷 문제 링크
https://www.acmicpc.net/problem/16468
🧭 풀이 시간
20분
👀 체감 난이도
✏️ 문제 설명
N개의 정점으로 높이가 정확히 L인 이진 트리를 만들 수 있는 경우의 수를 구해보자.
🔍 풀이 방법
[사용한 알고리즘]
정점 하나를 루트로 잡고, 나머지 n-1개의 정점으로 왼쪽, 오른쪽 서브트리를 구성할 수 있다.
그러면,$dp[n][h] = dp[k][i] \times dp[n-1-k][h-1] + dp[k][h-1] \times dp[n-1-k][i] - dp[k][h-1] \times dp[n-1-k][h-1]$ 와 같이 쓸 수 있다. $(0 \le k < n ; 0 \le i < h)$
이를 그대로 구현하면$O(N^2L^2)$ 으로 시간 초과일테고, 누적 합으로 $O(N^2L)$ 로 줄여 해결한다.
⏳ 회고
누적 합 구현이 생각보다 잘 안 돼서 힘들었다.