Skip to content

An update must have the same type as the original shared variable #7

@aijkershaw

Description

@aijkershaw

Thank you for publishing this code.

After following the instructions for SDAE, I run train_book.py and receive an error which suggests a shard variable is being overwritten with data of a different type.

Please could you help


 File "train_book.py", line 55, in <module>
    'test_text': ['newstest.tok.en']})
  File "train_book.py", line 32, in main
    embeddings=params['embeddings'][0])
  File "../SentenceRepresentation/SDAE/desent.py", line 905, in train
    f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost)
  File "../SentenceRepresentation/SDAE/desent.py", line 711, in adam
    f_update = theano.function([lr], [], updates=updates, on_unused_input='ignore')
  File "../local/lib/python2.7/site-packages/theano/compile/function.py", line 320, in function
    output_keys=output_keys)
  File "../local/lib/python2.7/site-packages/theano/compile/pfunc.py", line 442, in pfunc
    no_default_updates=no_default_updates)
  File "../local/lib/python2.7/site-packages/theano/compile/pfunc.py", line 207, in rebuild_collect_shared
    raise TypeError(err_msg, err_sug)
TypeError: ('An update must have the same type as the original shared variable (shared_var=<TensorType(float32, matrix)>, shared_var.type=TensorType(float32, matrix), update_val=Elemwise{add,no_inplace}.0, update_val.type=TensorType(float64, matrix)).', 'If the difference is related to the broadcast pattern, you can call the tensor.unbroadcast(var, axis_to_unbroadcast[, ...]) function to remove broadcastable dimensions.')

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions