You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<imgclass="center-fit" src="circleSegment.jpg" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r² - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
3211
+
<imgclass="center-fit" src="circleSegmentMarkup.jpg" alt="The area of a circle segment can be calculated by subtracting a triangle from a circle slice. Area = Acos(( r - n ) / r ) × r² - sin( Acos(( r - n ) / r ) × ( r - n ) × r">
3212
3212
</figure>
3213
3213
<br>
3214
3214
<pitemprop="abstract" style="margin:12px">The area of a circle segment can be calculated by subtracting a triangle from a circle slice.</p>
@@ -3227,7 +3227,7 @@ <h3 itemprop="name" style="margin:7px">Area of a Circle Segment</h3>
3227
3227
<mrow>
3228
3228
<mi>r</mi>
3229
3229
<mo>-</mo>
3230
-
<mi>n</mi>
3230
+
<mi>h</mi>
3231
3231
</mrow>
3232
3232
<mi>r</mi>
3233
3233
</mfrac>
@@ -3248,7 +3248,7 @@ <h3 itemprop="name" style="margin:7px">Area of a Circle Segment</h3>
3248
3248
<mrow>
3249
3249
<mi>r</mi>
3250
3250
<mo>-</mo>
3251
-
<mi>n</mi>
3251
+
<mi>h</mi>
3252
3252
</mrow>
3253
3253
<mi>r</mi>
3254
3254
</mfrac>
@@ -3259,7 +3259,7 @@ <h3 itemprop="name" style="margin:7px">Area of a Circle Segment</h3>
0 commit comments